Βιβλίο 2, Πρόταση ια'

Τὴν δοθεῖσαν εὐθεῖαν τεμεῖν ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ. ῎Εστω ἡ δοθεῖσα εὐθεῖα ἡ ΑΒ· δεῖ δὴ τὴν ΑΒ τεμεῖν ὥστε τὸ ὑπὸ τῆς ὅλης καὶ τοῦ ἑτέρου τῶν τμημάτων περιεχόμενον ὀρθογώνιον ἴσον εἶναι τῷ ἀπὸ τοῦ λοιποῦ τμήματος τετραγώνῳ.

᾿Αναγεγράφθω γὰρ ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΑΒΔΓ, καὶ τετμήσθω ἡ ΑΓ δίχα κατὰ τὸ Ε σημεῖον, καὶ ἐπεζεύχθω ἡ ΒΕ, καὶ διήχθω ἡ ΓΑ ἐπὶ τὸ Ζ, καὶ κείσθω τῇ ΒΕ ἴση ἡ ΕΖ, καὶ ἀναγεγράφθω ἀπὸ τῆς ΑΖ τετράγωνον τὸ ΖΘ, καὶ διήχθω ἡ ΗΘ ἐπὶ τὸ Κ· λέγω, ὅτι ἡ ΑΒ τέτμηται κατὰ τὸ Θ, ὥστε τὸ ὑπὸ τῶν ΑΒ, ΒΘ περιεχόμενον ὀρθογώνιον ἴσον ποιεῖν τῷ ἀπὸ τῆς ΑΘ τετραγώνῳ.

᾿Επεὶ γὰρ εὐθεῖα ἡ ΑΓ τέτμηται δίχα κατὰ τὸ Ε, πρόσκειται δὲ αὐτῇ ἡ ΖΑ, τὸ ἄρα ὑπὸ τῶν ΓΖ, ΖΑ περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ΑΕ τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΖ τετραγώνῳ. ἴση δὲ ἡ ΕΖ τῇ ΕΒ· τὸ ἄρα ὑπὸ τῶν ΓΖ, ΖΑ μετὰ τοῦ ἀπὸ τῆς ΑΕ ἴσον ἐστὶ τῷ ἀπὸ ΕΒ.

ἀλλὰ τῷ ἀπὸ ΕΒ ἴσα ἐστὶ τὰ ἀπὸ τῶν ΒΑ, ΑΕ· ὀρθὴ γὰρ ἡ πρὸς τῷ Α γωνία· τὸ ἄρα ὑπὸ τῶν ΓΖ, ΖΑ μετὰ τοῦ ἀπὸ τῆς ΑΕ ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΒΑ, ΑΕ. κοινὸν ἀφῃρήσθω τὸ ἀπὸ τῆς ΑΕ· λοιπὸν ἄρα τὸ ὑπὸ τῶν ΓΖ, ΖΑ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΒ τετραγώνῳ.


καί ἐστι τὸ μὲν ὑπὸ τῶν ΓΖ, ΖΑ τὸ ΖΚ· ἴση γὰρ ἡ ΑΖ τῇ ΖΗ· τὸ δὲ ἀπὸ τῆς ΑΒ τὸ ΑΔ· τὸ ἄρα ΖΚ ἴσον ἐστὶ τῷ ΑΔ. κοινὸν ἀρῃρήσθω τὸ ΑΚ· λοιπὸν ἄρα τὸ ΖΘ τῷ ΘΔ ἴσον ἐστίν. καί ἐστι τὸ μὲν ΘΔ τὸ ὑπὸ τῶν ΑΒ, ΒΘ· ἴση γὰρ ἡ ΑΒ τῇ ΒΔ· τὸ δὲ ΖΘ τὸ ἀπὸ τῆς ΑΘ· τὸ ἄρα ὑπὸ τῶν ΑΒ, ΒΘ περιεχόμενον ὀρθογώνιον ἴσον ἐστὶ τῷ ἀπὸ ΘΑ τετραγώνῳ.

῾Η ἄρα δοθεῖσα εὐθεῖα ἡ ΑΒ τέτμηται κατὰ τὸ Θ ὥστε τὸ ὑπὸ τῶν ΑΒ, ΒΘ περιεχόμενον ὀρθογώνιον ἴσον ποιεῖν τῷ ἀπὸ τῆς ΘΑ τετραγώνῳ· ὅπερ ἔδει ποιῆσαι.