
˜/nkechris/pap2

Probabilistic Counting of a Large Number of Events – Revisited

Micha Hofri, Nikolaos Kechris

Department of Computer Science, Rice University, Houston, TX 77005-1892
Department of Computer Science, University of Houston, Houston, TX 77204-3475

March 18, 1996

ABSTRACT

We revisit a method suggested in 1978 by R. Morris to obtain randomized, approximate
census over large sets in small registers. We demonstrate that his choice of estimation
functions lead to a particularly simple method of computing the moments of the estimate.
We emphasize statistical aspects of the procedure.

1. Problem Description

The problem of counting a large number of events (items) under storage constraints poses now
less technological difficulties than when [6] was published. It is still of theoretical, and
sometimes also practical interest. Particular instances may arise in database systems, where
accumulating run-time statistics of references and cross-references for a large number of records
over long stretches of time can lead to material improvement in the efficiency of query
processing; similarly, in certain operating systems the use of such statistics can help improve the
scheduling algorithms used and the resulting system performance. We refer the reader to the
above reference for a refreshing engineering-oriented view of the problem, and to [1] for a
mathematical treatment of more recent vintage.

The nature of the use of these counts implies that precision of the counts of each event type is
rarely critical, and we could make do well enough with an approximate measure of the number of
occurrences. Since storage is an important factor when a large number of counters have to be
maintained concurrently, we assume in the following that we use registers which are too small for
the usual representation to be used. Specifically, counting takes place in a b-bit register (which
can hold exact counts up to 2b − 1). Since the number of occurrences of an event can get fairly
large we will investigate methods for counting up to numbers much greater than 2b − 1,
essentially by recording the logarithm of the (approximate) count, using a suitably selected base.
We abide by the constraint that no additional storage is available. This approach falls within the
family of randomized algorithms.

This is the solution proposed and analyzed by Morris [6]. Flajolet [1] carries the analysis
further. The contribution of this report is in showing a different method of analysis that produces
exact results for the moments of the estimated count, expressed in closed form, without need for
asymptotics. We achieve this by using a slightly different form of the estimate. Asymptotics are
needed to address the issue of tail probabilities in a tractable form, and this is done in section 3.

Hofri and Kechris: Probabilistic Counting 2

In section 4 we quantify the trade-off between the range of representable counts and the precision
of the estimate.

In section 5 we examine an interesting contrast between the “log-based” approach and simple
sampling, where at every event, the counter is incremented with a constant probability p. As the
results will show, the latter is preferable when we have (ev en a very rough) a priori estimate of
the range of likely values of the total number of events. However, if the count actually comes to a
small part of the range only, the accuracy of this method can be so poor, that the estimate is
meaningless. When an estimate of the range, to within several orders of magnitudes is not
available, and in particular if we want to handle concurrently a large number of tallies which may
be of very different sizes, the analyzed approach will provide a simple method that guarantees a
better relative accuracy.

2. Using the Binary Logarithm

We imagine the register keeps track of the binary logarithm of the number of events that have
occurred so far. Specifically, in order for a zero register to represent the state that no event has yet
occurred we use the value stored in the register, ν , so that1

(1)ν (n) represents lg(1 + n),

subject to the integrality constraint on ν . Our estimate for the number of events that occurred
would be then

(2)n̂(ν) = 2ν − 1.

With some abuse of terminology we say that the range of this counting scheme is the largest
estimate it can produce. Since the register assumes only integral values, and we want an unbiased
estimate, the number of events Xν between the event that caused the counter to achieve the value
ν till it is next incremented to ν + 1 should have the expected value 2ν +1 − 2ν = 2ν . This suggests
the use of a probabilistic approach, where we view Xν as a geometrically distributed random
variable with a probability of success (leading to an increment) 2−ν , so that the expected number
of events until an increment occurs is the desired 2ν . This makes the counter content a simple
birth process. Using a (pseudo)random number generator on the interval [0, 1] we construct the
counting algorithm as follows :

repeat: {when (new event occurred)
do r: = random[0,1];

if r ≤ 1/2ν then ν : = ν + 1;
od;}

We compute now the distribution of the register content, as a function of the number of
ev ents—denoted by n throughout—that has occurred so far, under the assumption that the
generator is perfect in terms of uniformity and independence. Let pk,n denote the probability that

1 lgx denotes the binary logarithm, log2 x.

Hofri and Kechris: Probabilistic Counting 3

the register contains k after n ev ents occurred. From the algorithm we see,

(3)pk,n = (1 − 2−k)pk,n−1 + 2−(k−1) pk−1,n−1 k, n ≥ 1,

and the boundary values p0,n = δ0,n and pk,0 = δ k,0 complete the definition. introduce the
probability generating function (pgf) gn(z) = Σk≥0 pk,n zk . Equation (3) then produces

gn(z) − p0,n = gn−1(z) − p0,n−1 − gn−1(z
2) + p0,n−1 + zgn−1(z

2), n ≥ 1.

and we conclude that

(4)
g0(z) = 1

gn(z) = gn−1(z) + (z − 1)gn−1(z
2) n ≥ 1.

There is no difficulty in iterating this recursion to write an explicit solution for gn(z):

(5)gn(z) =
n

j = 0
Σ (n

j)
j−1

k = 0
Π (z2−k − 1).

It is possible to use equation (5) and obtain an explicit expression for the probabilities pk,n. Its
value for numerical evaluation is doubtful:

(6)
pk,n = [zk]gn(z) = 2−k(k−1)/2

k

i = 1
Π(1 − 2−i) j ≥ k

Σ (n
j)(−1) j+k

j

l= j−k+1
Π (1 − 2−l).

Somewhat simpler-looking expressions for pk,n can be recovered from a different gf defined as
qk(x) = Σn≥0 pk,n xn. Using it with equation (3) we find the recurrence

(7)qk(x) = x(1 − 2−k)qk(x) + 21−k xqk−1(x), k ≥ 1, q0(x) = 1.

Hence,

(8)

qk(x) = 2x2−k

1 − x(1 − 2−k)
qk−1(x) = xk2−(k

2)
k

j=1
Π(1 − x(1 − 2− j))−1

= xk2−(k
2)

k

j=1
Σ 1

1 − x(1 − 2− j)

k

i=1
i≠ j

Π 2 j − 1
2 j−i − 1

.

The extraction of coefficients leads to

(9)qk,n = 2−k(k−1)/2
k

j=1
Σ (1 − 2− j)n−1

k

i=1
i≠ j

Π 2 j

2 j−i − 1
= 2−(k

2)
k

j=1
Σ (1 − 2− j)n−1/

k

i=1
i≠ j

Π(2−i − 2− j).

Remarks: 1. Clearly we should have pk,n = qk,n. Since their formulas appear different it is
instructive to show they are indeed equal. We do it using a calculation adapted from [3]. The
probabilities qk,n are rewritten with the notation

[10)(r)n =
n

k=1
Π(1 − r k).

We only use r = 1⁄2 here, and its numerical value varies between 1, for (1⁄2)0, and 0.2887881... for
(1⁄2)∞. Then

Hofri and Kechris: Probabilistic Counting 4

(11)qk,n =
k

j=0
Σ (1 − 2− j)n(−1)k− j 2−(k− j

2)
(1⁄2) j(1⁄2)k−j

,

where a j = 0 term (which makes no contribution) was added, and a (1 − 2− j) in both the
numerator and denominator, to show it is a convolution. Developing the binomial leads to

(12)qk,n =
l
Σ(n

l)(−1)l
k

j=0
Σ [z j]

i≥0
Σ 2−il zi

(1⁄2)i
⋅ [zk− j]

r≥0
Σ (−z)r2−(r

2)
(1⁄2)r

.

The convolution, with the Euler identities [2, pp. 89-90]

(13)
i ≥ 0
Σ (uz)i

(1 − z)(1 − z2) . . . (1 − zi)
=

k≥1
Π(1 − uzk)−1

and

(14)
r ≥ 0
Σ ur z(r

2)
(1 − z)(1 − z2) . . . (1 − zr)

=
k ≥ 0
Π (1 + uzk),

with some cancellations, provide

qk,n =
l
Σ(n

l)(−1)l[zk]
l−1

i=0
Π(1 − z2−i).

Hence Σk zk qk,n is equal to gn(z) as giv en in (5). Equivalently, one can show that Σn gn(z)xn and
Σk qk(x)zk lead to the same expression.
2. The expressions for pk,n appear different from an analogous one derived in [1], due to our
initializing the counter differently (equation (11) is easiest to compare).
3. We shall see that meaningful probabilities are bunched tightly around k ~ lgn, hence
computing the sum for qk,n appears vastly more efficient. In fact, though all the expressions we
have require summation over terms with alternating signs, the number of contributing terms in
(11) is so small—typically, half a dozen—that quite accurate numerical calculations could be
done (this is how Table 1 was produced).
4. Our plan to estimate n, the number of events, via its logarithm has an important consequence.
It is due to the fact that unbiasedness of an estimator is not preserved under a nonlinear
transformation. In particular, an exponential transformation can introduce a sharp distortion (it is
easy to manufacture examples with an arbitrary bias). The converse is that it matters little if the
counter we use is a poor estimate of log n, so long as the estimate of n constructed from it is
unbiased. Tail probabilities, however, can be equally well picked from the distribution of either
estimate, as we show below.

We can use equation (5) further to write an explicit value for the double (Poisson) generating
function V (u, z):

(15)V (u, z) ≡ e−u

n ≥0
Σ gn(z) un

n! =
i ≥ 0
Σ ui

i!
i−1

k = 0
Π (z2−k − 1) =

i ≥ 0
Σ

i

j = 1
Π u(z21− j − 1)

j .

All our explicit results have no closed forms; it turns out we can obtain what we need for this
section in a simpler, more direct way. The key is that the recurrence (4) can be easily solved
when z is a nonnegative power of 2. This is all we need in order to calculate the moments of our
estimate of the number of events, n̂. Computing gn(2r) provides the rth moment of the estimate.

Hofri and Kechris: Probabilistic Counting 5

In particular, for z = 2 and z = 22 we first find:

(16)
gn(2) = gn−1(2) + gn−1(1) = gn−1(2) + 1 = . . . = n + 1.

gn(4) = gn−1(4) + 3gn−1(2) = gn−1(4) + 3n = . . . = g0(4) + 3
n

k = 1
Σ k = 1 + 3n(n + 1)

2 .

In general we can write from equation (5) (note the upper bound on j, therein lies the great
convenience of these evaluations),

(17)gn(2r) =
r

j=0
Σ(n

j)
j−1

i=0
Π(2r−i − 1).

Now consider the first and second moments of our estimate n̂:

(18)

E[n̂] =
k ≥ 0
Σ pk,n(2k − 1) =

k ≥ 0
Σ pk,n2k − Σk ≥ 0 pk,n = gn(2) − 1 = n.

E[n̂2] =
k ≥ 0
Σ pk,n(2k − 1)2 = Σk ≥ 0 pk,n22k − 2

k ≥ 0
Σ pk,n2k +

k ≥ 0
Σ pk,n

= gn(4) − 2gn(2) + 1 = n(3n − 1)
2 .

Thus we obtained,

(19)
E[n̂] = n.

V [n̂] = n(n − 1)
2 .

The estimator is unbiased, but its variance is large – the expected error is nearly the size of the
estimate itself – which is not surprising, since a deviation of ν by one corresponds to doubling (or
halving) the estimate. On the other hand, this variance is a poor indicator of deviation
probabilities, since except for quite small n, the underlying distribution has very light tails, as we
show below.

3. Asymptotic Properties of the Distribution

We consider two issues here. One is the tail probabilities for the estimate n̂, and the other is the
shape its distribution takes as n increases.

3.1. Tail Probabilities

Tell about saddle point.

3.2. Limiting Distribution

The limiting distribution of k, the register content, became apparent through numerical experi-
mentation. Table 1 illustrates the way the distribution changes with n. It has extremely light
tails: the missing values in the table denote probabilities smaller than 10−13.

(1⁄2)∞ = 0. 2887880950866024212789. . .

Hofri and Kechris: Probabilistic Counting 6

pp\n 24 210 216 222 230

p1,n 0.(4)30517 − − − − − − − −
p2,n 0.0266659 − − − − − − − −
p3,n 0.3064103 − − − − − − − −
p4,n 0.4735007 − − − − − − − −
p5,n 0.1736714 − − − − − − − −
p6,n 0.0190152 0.(6)33816 − − − − − −
p7,n 0.0006966 0.0011162 − − − − − −
p8,n 0.(5)90864 0.0604486 − − − − − −
p9,n 0.(7)43650 0.3429282 − − − − − −
p10,n 0.(10)78453 0.4215521 − − − − − −
p11,n − − 0.1535465 − − − − − −
p12,n − − 0.0194496 0.(6)38883 − − − −
p13,n − − 0.0009398 0.00116014 − − − −
p14,n − − 0.(4)18363 0.0610895 − − − −
p15,n − − 0.(6)15083 0.3433293 − − − −
p16,n − − 0.(9)53531 0.4207433 − − − −
p17,n − − − − 0.1532604 − − − −
p18,n − − − − 0.0194547 0.(6)38967 − −
p19,n − − − − 0.00094361 0.0011608 − −
p20,n − − − − 0.(4)18532 0.0610995 − −
p21,n − − − − 0.(6)15320 0.3433355 − −
p22,n − − − − 0.(9)54790 0.4207306 − −
p23,n − − − − − − 0.1532559 − −
p24,n − − − − − − 0.0194548 − −
p25,n − − − − − − 0.0009437 − −
p26,n − − − − − − 0.(4)18534 0.(6)38968
p27,n − − − − − − 0.(6)15324 0.0011608
p28,n − − − − − − 0.(9)54810 0.0610997
p29,n − − − − − − − − 0.3433356
p30,n − − − − − − − − 0.4207304
p31,n − − − − − − − − 0.1532559
p32,n − − − − − − − − 0.0194548
p33,n − − − − − − − − 0.0009437
p34,n − − − − − − − − 0.(4)18534
p35,n − − − − − − − − 0.(6)15324
p36,n − − − − − − − − 0.(9)54810

Table 1: Selected values of pk,n. Missing values < 10−13.

4. Generalizing to an Arbitrary Base

The size of the counter, b bits, is typically tailored to the architecture of the machine that
performs the counting. Otherwise the arithmetic would be quite expensive. Under certain
circumstances the range it provides, defined following relation (2), of zero to 22b−1 − 1, may prove
too small for the envisioned application. One simple solution may be to use a larger counter

Hofri and Kechris: Probabilistic Counting 7

(adding a bit nearly squares the range), and doubling the register will usually carry a modest time
penalty – but the entire issue arises because storage is at premium. One could then increase the
range simply by assuming the content is not a binary logarithm, but a logarithm to some higher
base, say c. It will be shown—and a brief reflection will convince the reader—that this change
incurs a penalty in the size of the expected error. On the other hand, if the nature of the
application is such that the above range is very unlikely to be fully used, we could improve the
quality of the estimation by using a base smaller than 2.

Hence we are led to generalize our calculation for an arbitrary base c. The specific
representation we choose (which differs from the one in [1] and [6] in an inessential way) is such
that we imagine the value ν stored in the register so that

(20)ν (c)(n) represents logc((c − 1)n + 1),

so that our estimate for the number of events that occurred till the counter reached its present
value at ν would be

(21)n̂(c)(ν) = cν − 1
c −1 .

For the special case c = 22d
we may see the counter as having an implicit binary point; when d is

positive there are d zeroes following the counter, and when it is negative, the rightmost d digits
are a binary fraction.

Following the same reasoning as before, if the current state of the register is ν we increment
the counter at each event with the probability 1/[n̂(c)(ν + 1) − n̂(c)(ν)] = c−ν , to keep our estimate
for the number of events unbiased.

Using the same notation as in the previous section we can write,

(22)p(c)
k,n = (1 − c−k)p(c)

k,n−1 + c−k+1 p(c)
k−1,n−1 k, n ≥ 1.

Treating equation (22) just as we used (3) provides

(23)
g(c)

0 (z) = 1,

g(c)
n (z) = g(c)

n−1(z) + (z − 1)g(c)
n−1(z

c) n ≥ 1.

We can solve here for the various functions explicitly as above. A glance reveals that they would
have precisely the same structure as in section 2, with ‘c’ replacing the ‘2’ under the product
signs. The continuation is similar as well: To find the first two moments of the estimate we have
to evaluate g(c)

n (c) and g(c)
n (c2):

(24)g(c)
n (c) = g(c)

n−1(c) + (c − 1)g(c)
n−1(1) = . . . = g(c)

0 (c) +
n

k = 1
Σ (c − 1) = (c − 1)n + 1.

and

(25)
g(c)

n (c2) = g(c)
n−1(c2) + (c2 − 1)g(c)

n−1(c) = g(c)
n−1(c2) + (c2 − 1)(c − 1)(n − 1) + c2 − 1 = . . .

= g(c)
0 (c2) + (c2 − 1)(c − 1)

n−1

k = 1
Σ k + (c2 − 1)n = (c2 − 1)(c − 1)n2/2 + (c2 − 1)(3 − c)n/2 + 1.

Then,

Hofri and Kechris: Probabilistic Counting 8

(26)E[n̂(c)] =
k ≥ 0
Σ p(c)

k,n
ck − 1
c −1 = 1

c − 1 (
k ≥ 0
Σ p(c)

k,nck −
k ≥ 0
Σ p(c)

k,n) = 1
c − 1 (g(c)

n (c) − 1) = n.

and

(27)
E[(n̂(c))2

] =
k ≥ 0
Σ p(c)

k,n(ck − 1
c −1)2

= 1
(c − 1)2 (

k ≥ 0
Σ p(c)

k,nc2k − 2
k ≥ 0
Σ p(c)

k,nck +
k ≥ 0
Σ p(c)

k,n)

= 1
(c − 1)2 (g(c)

n (c2) − 2g(c)
n (c) + 1) = (c + 1)n2/2 − (c − 1)n/2.

Therefore we conclude

(28)
E[n̂(c)] = n

V [n̂(c)] = c − 1
2 n(n − 1).

The results reduce to the previous ones when we use c = 2. Table 2 below presents some
numerical examples of the achievable precision when c is of the form 22d

, for −5 ≤ d ≤ 2.

5. Discussion

We would prefer the reader to view the above as an exercise in the use of generating functions in
the analysis of a randomized algorithm, rather than as a recommendation for its use. The
presented method is probably not a realistic one to choose for most applications. Storage is not as
expensive as when [6] was published and large address spaces are possible. On the other hand, if
we consider scenarios where storage would be an issue (where we need to count a large number
of parallel streams of fast-coming events, or there would be no need for a large range), the
computational load of producing pseudo random variates with a flat distribution at the tail—note
that extremely small probabilities may be required here naturally, and most of the efficient
random-number generators, which are arithmetic-based, misbehave in such extreme states—may
prove far too heavy.

It is interesting to examine here the simple-minded approach of probabilistic counting by
sampling with a fixed probability p, reg ardless of the content of the counter. This approach will
produce the count ν with E[ν |n] = np, and V [ν |n] = np(1 − p). We compare it to the Morris
method when the counter has b bits and the base is given as c = 22d

. This allows for a range of N
= (c2b−1 − 1)/(c − 1) events. For the two methods to have the same range we want to fix p so that
E[ν |N] = Np equals 2b − 1 as well, hence

(29)p = 2b − 1
N ≈ 2b(c − 1)

c2b−1
= (c − 1)2b − (2b−1)2d

.

Simple sampling produces the unbiased estimator ñ = ν /p. Since both estimators are unbiased,
and we tailored the parameters for both to provide the same range for the number of events, it is
meaningful to compare the methods by the quality of the estimates they provide. Define the
relative precision of an unbiased estimator as the ratio of its standard deviation (sd) to n.

We use the symbols σ̂ and σ̃ for the sds of n̂ and ñ. Clearly σ̃ 2 is n(1 − p)/p, and since p is
typically very small, we approximate this by n/p. Equations (28) and (29) now say

Hofri and Kechris: Probabilistic Counting 9

(30)σ̂ (n)
n ≈ √ (c − 1)/2, σ̃ (n)

n = 1
√ np

≈ √ N
nlgN .

The precision of simple sampling depends on n, and comparison requires we look at a few
possible values of n. If the system designer erred badly, and the range is hardly used, with n
coming, say, to √ N only, he is punished by a miserable precision:

(31)σ̃ (n)
n n=√ N

≈

22b−1

2blgc

1⁄2

= 2(2b−1− b − d)/2.

Using b = 8 we get for this relative precision 260−d/2 which, for d in the reasonable range, a small
integer, is almost meaningless, and clearly insupportable. When n is closer to N , which we
represent by N2−r , with r a small integer, it looks better:

(32)σ̃ (n)
n n=N2−r

≈ (2r /(2b − 1)lgc)
1⁄2

≈ 2(r − b − d)/2.

Some examples are collected in Table 2.
An interesting variation on the topic has been suggested by Kruskal and Greenberg in [5].

They consider the same counting algorithm, but avoid settling on any particular function for the
estimate n̂(ν) in terms of the counter value. They envision using an arbitrary strictly monotonic
function f (ν), and setting p−1

0 = 1 + f (0), and p−1
ν = f (ν) − f (ν − 1) for ν > 0. This provides a

counter evolution such that E[n|ν] = f (ν) = Σ ν
i=01/pi −1, and a corresponding expression for the

variance of n. Note that in the last left-hand side we used n rather than n̂: when one uses
arbitrary probabilities of incrementation, including such that do not necessarily change exponen-
tially with ν in an homogeneous way, the approach we used is infeasible. In particular, there is no
relation equivalent to (4), from which to derive the moments of our estimate. In the approach of
[5] one must go the Bayesian way, and consider n itself a random variable (possibly with an
improper prior).

References.

d c log2 N σ̂ /n σ̃ /n, r = 2 σ̃ /n, r = 10
−5 1.0219 13.48 0.105 0.707 11.314
−4 1.0443 20.43 0.149 0.500 8.000
−3 1.0905 35.34 0.213 0.354 5.657
−2 1.1892 66.15 0.308 0.250 4.000
−1 1.4142 128.77 0.455 0.177 2.828

0 2.0000 255.00 0.707 0.125 2.000
1 4.0000 508.42 1.225 0.088 1.414
2 16.0000 1016.09 2.739 0.062 1.000

Table 2
The dependence of the range N and relative precision on the position of the

implicit binary point in a counter of 8 bits. n = N ⋅ 2−r .

Hofri and Kechris: Probabilistic Counting 10

[1] P. Flajolet, Approximate Counting: A Detailed Analysis. BIT, 25, 113−134 (1985)
[2] M. Hofri, Analysis of Algorithms: Mathematical Methods & Computational Tools. Oxford
University Press, New York (1995).
[3] P. Kirschenhofer, H. Prodinger, Approximate Counting: An Alternative Approach. Inform.
Theor. et Applic. (RAIRO), 25#1, 43−48 (1991).
[4] P. Kirschenhofer, H. Prodinger, W. Szpankowski, Analysis of a Splitting Process Arising in
Probabilistic Counting and Other Related Algorithms. Preprint. (A previous version appeared in
W. Kuich (Ed.) Proc. ICALP 211−222, Vienna, June 1992.)
[5] J.B. Kruskal, A.G. Greenberg, A Flexible Way of Counting Large Numbers Approximately in
Small Registers. Algorithmica, 6, 590−596 (1991).
[6] Robert Morris, Counting Large Number of Events in Small registers. Comm. of ACM, 21,
840−842 (1978).
[7] H. Prodinger, Digital Search Trees and Basic Hypergeometric Functions. EATCS Bulletin, 56,
112−115 (1995).

